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Michael Barnsley made two visits to Wright Patterson to discuss opportu-

nities for deployment of superfractals. Based on collaborative discussions with
Dr. Ewing�s team and Dan Repperger, and feedback from the presentation made
during the October 2008 trip, he made a second presentation in March 2009, at
"Radar Workshop on SuperResolution". In this lecture he argued that it is fea-
sible to use superfractals in the design of antennas. This would have advantages
over standard fractal designs: (i) implementation of V -variable models, whereby
the structure of the antenna is of several characters at each level; (ii) simplicity
of recon�guration to di¤erent designs, for testing. The approach would be based
on the use of fractal homeomorphisms.
A number of papers related to this topic were written during the period of the

grant and are listed below. The published versions of [1] and [2] should include
explicit acknowledgements of support from AOARD. (Barnsley also published
other papers during this period but these were not related to the topic.)
A high level programmer with Matlab expertise was retained to investigate

the feasibility of making an image recognition system based on fractal homeo-
morphisms, in a Matlab environment. In view of the decision to focus on antenna
design, the poor performance of Matlab code in comparision with Barnsley�s ex-
isting code, and the expense of continuing to work with Matlab, this direction
was discontinued.
Some progress towards an intellectually satisfying model for living systems,

using discrete superfractals, was made.
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THE LIFE AND SURVIVAL OF MATHEMATICAL IDEAS

MICHAEL F. BARNSLEY

Nature and evolution provide the notion of a creative system: a core stable form
(DNA), a fertile environment, a determination to survive, and random stimuli.
Analogously, the mind of a mathematician provides a locus for creative systems, a
place where mathematical structures live and evolve.
According to the King James version of Genesis, "On the Fifth day ... God

created great whales." But Darwin went one better; at the end of his masterwork,
in simple beautiful language, he proposes that what was created was a creative
system. The last paragraph of Origin of Species says:

It is interesting to contemplate a tangled bank, clothed with many
plants of many kinds, with birds singing on the bushes, with various
insects �itting about, and with worms crawling through the damp
earth, and to re�ect that these elaborately constructed forms, so
di¤erent from each other, and dependent upon each other in so
complex a manner, have all been produced by laws acting around
us. .... There is grandeur in this view of life, with its several
powers, having been originally breathed by the Creator into a few
forms or into one; and that, whilst this planet has gone circling on
according to the �xed law of gravity, from so simple a beginning
endless forms most beautiful and most wonderful have been, and
are being evolved.

Faced with the extraordinary richness and complexity of the physical observable
universe, of which we are part, what on earth can a mathematician truly create?
The answer is: a vast landscape of lovely constructions, born for the �rst time, to
live on in the realm of ideas. For the realm of ideas belongs to sentient beings such
as us: whether or not there was a Creator, it is certain that the system of which
we are part is, by its very nature, creative. Our genes are creative, they have to be,
and they have to allow creative mutations. They must be stable in their creativity.
Their creativity is the well-spring of ours. Not only must our genes, through the
mechanisms of biology and random mutation, invent new viable forms: they must
be prone to do so.
Our mathematical creativity may actually be initiated by random events at the

deepest level, after deductive reasoning, consistencies, experience, and even intu-
ition, are factored out of the process. But the creative mind contains something
much more important than a random idea generator; it provides an environment in
which the wild seed of a new idea is given a chance to survive. It is a fertile place.
It has its refugias and extinctions. In giving credit for creativity we really praise
not random generation but the determination to give life to new forms.
But when does a newly thought up mathematical concept, C, survive? Obviously,

C must be consistent with mathematics, true, correct, etc. But I believe that what
causes C to survive in the minds and words of mathematicians is that it is, itself,
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a creative system. For now I will resist trying to give a precise de�nition: for this
young notion to survive, it needs to be adaptable. Roughly, I mean that C has
the following attributes: (I) C is able to de�ne diverse forms and structures, call
them plants; (II) plants possess DNA; (III) C is stable in several senses; (IV) C
can be treated from diverse mathematical positions (e.g. topological, geometrical,
measure theoretic, algebraic); (V) C is highly adaptable and can be translated into
the languages of various branches of science and engineering, with real applications;
(VI) creative systems beget new creative systems.
For more that two thousand years the key forms of Euclid�s Geometry have

survived, shifted in importance, and evolved. It has all six properties of a creative
system; indeed one could �nd a number of di¤erent ways of de�ning it as such. Here
is the one that I like: the diverse forms and structures are objects such as lines,
circles and other constructions; the DNA of these plants are formulas, such as "the
equation for a straight line", provided by Descartes analytic geometry; Euclidean
geometry can be treated from geometric, algebraic and other viewpoints; the topic is
stable both in the sense that nearby DNA yields nearby forms and in the sense that
small changes in the axioms lead to new viable geometries; it has adapted to many
branches of science and engineering, with rich applications; and Euclidean geometry
begat projective geometry via the inclusion of the line at in�nity. Alternatively one
might describe Euclid�s geometry more abstractly so that the theorems are its the
diverse structures and the axioms and de�nitions are its DNA.
Dynamical systems [19] and cellular automata [35] provide two recent examples

of creative systems. I mention these topics because each has an obvious visible
public aspect, more colorful than lines and circles drawn on papyrus: their depth
and beauty are advertised to a broad audience via computer graphics represen-
tations of some of their �ora. They are alive and well, not only in the minds of
mathematicians, but also in many applications.
In your own mind you give local habitation and a name to some special parts

of mathematics, your creative system. Since this note is a personal essay, I focus
on ideas extracted from my own experience and research. In particular, I discuss
iterated function systems as a creative system, to illustrate connections with artistic
creativity. To sharpen the presentation I focus almost exclusively on point-set
topology aspects. While the speci�cs of iterated function systems may not be
familiar to you, I am sure that the mathematical framework is similar to ones that
you know.

1. Iterated function systems, their attractors, and their DNA

An iterated function system (IFS),

F := (X; f1; :::; fN ),

consists of a complete metric space X together with a �nite sequence of continuous
functions, ffn : X! XgNn=1 : We say that F is a contractive IFS when all its func-
tions are contractions. A typical IFS creative system may consist of all IFSs whose
functions belong to a restricted family, such as a¢ ne or bilinear transformations
acting on R2.
Let H denote the set of nonempty compact subsets of X. We equip H with the

Hausdor¤ metric, so that it is a complete metric space. The Hausdor¤ distance
between two points in H is the least radius such that either set, dilated by this
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Figure 1. Pictures of attractors of a¢ ne, bilinear, and projective IFSs.

radius, contains the other set. We de�ne a continuous mapping F : H! H by

F (B) = [fn(B)
for all B 2 H. Note that we use the same symbol F for the IFS and for the mapping.
Let us write F�k to denote the composition of F with itself k times. Then we

say that a set A � X is an attractor of the IFS F when A 2 H and there is an open
neighborhood N of A such that

lim
k!1

F�k(B) = A

for all B � N with B 2 H. Since F : H! H is continuous we have F (A) = A.
Notice that our de�nition of attractor is topological: in the language of dynamical
systems, A is a strongly stable attractive �xed-point of F .
Our �rst theorem provides a su¢ cient condition for an IFS to possess an attrac-

tor, one of the "plants of many kinds" of an IFS creative system.

Theorem 1. [18] Let F = (X; f1; :::; fN ) be a contractive IFS. Then F : H! H is
a contraction, and hence, by Banach�s contraction theorem, F possesses a unique
global attractor.

Attractors of IFSs are our main examples of the diverse forms and structures of
an IFS creative system, see Figure 1, as in attribute (I). An a¢ ne IFS is one in
which the mappings are a¢ ne on a Euclidean space. Attractors of a¢ ne IFSs are
the bread-and-butter sets of fractal geometers, such as Sierpinski triangles, twin-
dragons, Koch curves, Cantor sets, fractal ferns, and so on. The geometries and
topologies of these attractors are so rich, fascinating and diverse that deep papers
get written about a single species, or very small families of them!
We de�ne the DNA of an IFS attractor to be an explicit formula for the IFS. We

refer to the DNA of an IFS attractor as an IFS code. The DNA for the canonical
Cantor set is (R; f1(x) = x=3; f2(x) = (x+ 2) =3); these few symbols and their con-
text de�ne a non-denumerable set of Lebesque measure zero. Similarly, the DNA
for the Sierpinski triangle is (R2; f1(x; y) = (x=2; y=2); f2(x; y) = (x=2 + 1=2; y=2);
f3(x; y) = (x=2; y=2 + 1=2)). Here a curve whose points are all branch points is
captured in a short strand of symbols. Other simple IFS codes provide DNA for
classical objects such as arcs of parabolas, line segments, triangles, and circles.
How do the individual numbers in IFS codes relate to the properties of the

attractors that they de�ne? Similarly, we might ask about the relationship between
the DNA of a biological plant and the plant itself, the details of its leaf shapes, the
structure of its vascular bundles, and so on.
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2. When does an affine IFS possess an attractor?

In discussing this seemingly simple question we reveal how IFS theory is subtle
and leads into applications, as in attribute (V). We characterize both geometrically
and metrically, see attribute (IV), those a¢ ne IFSs that possess attribute (I).
Intuition incorrectly suggests that the answer to our question is: if the magni-

tudes of all of the eigenvalues of the linear parts of the maps of the IFS are less
than one, then the a¢ ne IFS has an attractor. The situation seems to be analogous
to the situation for discrete dynamical systems, [17] Proposition, p.279, where an
a¢ ne map has an attractive �xed point if and only if the norm of the linear part is
less than one. But the situation is not analogous. Consider for example the IFS

(R2; f1(x; y) = (2y;�x=3); f2(x; y) = (�y=3; 2x)):
The point O = (0; 0) is an attractive �xed point for both f1 and f2, because
f�2n1 (x; y) = f�2n2 (x; y) = (�2=3)n (x; y) ; f�(2n+1)1 (x; y) = (�2=3)nf1(x; y); and
f
�(2n+1)
2 (x; y) = (�2=3)nf2(x; y) for all points (x; y) in R2. But fOg is not an
attractor for the IFS because (f1 � f2)n(x; y) = (4nx; y=9n) implies that O is an
unstable �xed point.
The following theorem contains an answer to our question, and an a¢ ne IFS

version of the converse to Banach�s contraction theorem [13]. For us, most impor-
tantly, it provides both a metric and a geometrical characterization of viable a¢ ne
IFS codes. See also Berger and Wang, [9], and Daubechies and Lagarias, [10].

Theorem 2. [1] If F = (RM ; f1; :::; fN ) is an a¢ ne IFS then the following state-
ments are equivalent.
(1) F possesses an attractor.
(2) There is a metric, Lipshitz equivalent to the Euclidean metric, with respect

to which each fn is a contraction.
(3) There is a closed bounded set K � RM , whose a¢ ne hull is RM , such that

F is non-antipodal with respect to K.

Brie�y, let me explain the terminology. We say that two metrics d1 (�; �) and
d2 (�; �) on RM are Lipshitz equivalent when there is a constant C � 1 such that
d1(x; y)=C � d2(x; y) � Cd1(x; y) for all x; y 2 RM . Given any closed bounded
set K in RM , whose a¢ ne hull is RM , and any u 2 SM�1; the unit sphere in
RM ; let fHu;H�ug be the unique pair of distinct support hyperplanes of K per-
pendicular to u; see [27] p.14. Then the set of antipodal pairs of points of K is
K 0 :=

�
fa; a0g : a 2 Hu \ @K; a0 2 H�u \ @K; u 2 SM�1	 where @K denotes the

boundary ofK. We say that an IFS F is non-antipodal with respect to K when each
of its functions takes K into itself but maps no antipodal pair of points of K to an
antipodal pair of points of K: We denote the latter condition by F (K 0) \K 0 = ;.
Part of the proof of Theorem 2 relies on the observation that if K � RM is a

convex body (think of K as the convex hull of K in (3)) then we can de�ne a metric
dK(�; �) on RM , Lipshitz equivalent to the Euclidean metric, by

dK(x; y) = inf

�
kx� yk
kl �mk : l;m2K; l �m = � (x� y) ; � 2 R

�
for all x 6= y, where kx� yk denotes the Euclidean distance from x to y in RM .
One shows that, if an a¢ ne map fn is non-antipodal with respect to K, then it is a
contraction with respect to dK. In fact dK is, up to a constant factor, a Minkowski



THE LIFE AND SURVIVAL OF MATHEMATICAL IDEAS 5

Figure 2. The left-hand panel shows a black fern image within a
grimy window; overlayed upon it are four a¢ ne transformations of
the window and the fern, with the transformed fern images shown
in green. The goal has been to approximate the original (black)
fern with a¢ nely transformed (green) copies of itself. The rectan-
gular window has been mapped non-antipodally upon itself. So,
by Theorem 2, there exists a metric such that the associated a¢ ne
IFS F is contractive. The original fern (black) and the attractor
(red) of F are shown in the right-hand panel.

metric [30] associated with the symmetric convex body de�ned by the Minkowski
di¤erence K �K.
Theorem 2 provides a means for de�ning viable IFS codes (DNA) and is useful

in the design of a two-dimensional a¢ ne IFS whose attractor approximates a given
target set T � R2. Typical IFS software for this purpose exhibits a convex window
K, containing a picture of T , on a digital computer display. A set of a¢ ne maps
is introduced, thereby de�ning an IFS F . The maps are adjusted using interactive
pictures of F (K) and F (T ). If we ensure that F (K) � K and F (K0) \ K0 = ;,
then F possesses a unique attractor A � K. An example is illustrated in Figure 2.
Now we are in a position to explain a stability relationship between IFS codes

and attractors, and thus to exhibit a form of stability as in attribute (III). We
can control the (Hausdor¤) distance hK, which depends on dK, between A and T
because it depends continuously on the distance between F (T ) and T . Indeed, the
collage theorem [2] states that

hK(A; T ) �
hK(F (T ) ; T )

1� �
where 0 � � < 1 is a Lipshitz constant for F : H! H, for example the maximum
of a set of contractivity factors of the fns with respect to dK. Notice that this rela-
tionship says nothing about the topological structure of an attractor: it comments
only on its approximate shape.
The collage theorem expresses one kind of stability for the IFS creative system,

as in attribute (III): small changes in the IFS code of a contractive IFS lead to small
changes in the shape of the attractor. Indeed, this realization played a role in the
development of fractal image compression [2]. In this development several things
occurred. First, a¢ ne IFS theory adapted to a digital environment, illustrating a



6 MICHAEL F. BARNSLEY

component of attribute (V). Since contractive a¢ ne IFSs do not in general translate
to contractive discrete operators, [28], new theory had to be developed. (See for
example [16].) This illustrates stability of a second kind, as required in attribute
(III): the underlying ideas are robust relative to structural changes in the creative
system. Finally, a real application was the result, as required by attribute (V).

3. Projective and Bilinear IFSs

We will also use both projective and bilinear IFSs for creative applications that
control the shape and topology of attractors, and transformations between attrac-
tors. Both are generalizations of two-dimensional a¢ ne IFSs. Both can be ex-
pressed with relatively succinct IFS codes, yet have more degrees of freedom than
a¢ nes. Another such family of IFSs is provided by the Möbius transformations on
C [ f1g. The availability of a rich selection of accessible examples is a valuable
attribute for the survival of a mathematical idea.
In two dimensions, the functions of a projective IFS are represented in the form

(3.1) fn(x; y) = (
anx+ bny + cn
gnx+ hny + jn

;
dnx+ eny + kn
gnx+ hny + jn

);

where the coe¢ cients are real numbers. A similar result to Theorem 2 applies
to such projective transformations restricted to a judiciously chosen convex body,
with the associated Hilbert metric, [12] p.105, used in place of the generalized
Minkowski metric mentioned above. Speci�cally, let F denote a projective IFS of
the form (K�; f1; :::; fN ); where K� is the interior of a convex body K � R2 such
that F (K) � K�. The associated Hilbert metric dH is de�ned on K� by

dH(x; y) = ln jR (x; y; a; b)j for all x; y 2 K� with x 6= y,
where R (x; y; a; b) = (jb� xj= jx� aj) = (jb� yj= jy � aj) denotes the cross ratio be-
tween x; y and the two intersection points a; b of the straight line through x; y with
the boundary K. You might like to verify that F is a contractive IFS with re-
spect to dH , using the fact that projective transformations preserve cross ratios.
So projective IFSs can be used in applications in nearly the same way as a¢ ne
systems.
To describe bilinear transformations, let R = [0; 1]2 � R2 denote the unit square,

with vertices A = (0; 0); B = (1; 0); C = (1; 1); D = (0; 1): Let P;Q;R; S denote, in
cyclic order, the successive vertices of a possibly degenerate quadrilateral. Then we
uniquely de�ne a bilinear function B : R ! R such that B(ABCD) = PQRS by
(3.2) B(x; y) = P + x(Q� P ) + y(S � P ) + xy(R+ P �Q� S):
This transformation acts a¢ nely on any straight line that is parallel to either the
x-axis or the y-axis. For example, if BjAB : AB ! PQ is the restriction of B to
AB, and if Q : R2 ! R2 is the a¢ ne function de�ned by Q(x; y) = P +x(Q�P )+
y(S � P ); then QjAB = BjAB . Because of this "a¢ ne on the boundary" property,
bilinear functions are well suited to the construction of fractal homeomorphisms,
as we will see. Su¢ cient conditions under which there exists a metric with respect
to which a given bilinear transformation is contractive are given in [6]. A bilinear
IFS has an attractor when its IFS code is close enough (in an appropriate metric)
to the IFS code of an a¢ ne IFS that has an attractor.
An example of a geometrical con�guration of quadrilaterals that gives rise to

both a projective and a bilinear IFS is illustrated in Figure 3. In either case we
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Figure 3. The four quadrilaterals IEAH, IEBF; IGCF , IGDH,
de�ne both an projective F and a bilinear IFS G both of which have
a unique attractor, the �lled rectangle with vertices at ABCD;
but the address structures are di¤erent. In the left panel and
right panels, the attractors of F and G respectively have been
rendered, so that points with the same address are the same shade
of grey. The address structure is independent of E;F;G;H; I; in
the bilinear case but not in the projective case. (Hint: compare
how lines meet the line IE.)

de�ne the IFS to be (R; f1; f2; f3; f4) where
f1(ABCD) = IEAH; f2 (ABCD) = IEBF; f3 (ABCD) = IGCF; f3(ABCD) = IGDH,

where the �rst expression means f1 (A) = I; f1 (B) = E; f1 (C) = A; f1 (D) = H.
With few constraints each IFS is contractive with respect to a metric that is Lipshitz
equivalent to the Euclidean metric, with attractor equal to the �lled rectangle
ABCD: But there is an important di¤erence: the bilinear family provides a family
of homeomorphisms on R, with applications to photographic art, attribute (V),
while the projective family does not, as we will see.

4. The Chaos Game

How do we compute approximate attractors in a digital environment? Algo-
rithms based on direct discretization of the expression A = limk!1 F�k(B) have
high memory requirements and tend to be inaccurate, [28]. The availability of a
simple algorithm that is fast and accurate, for the types of IFS that we discuss, has
played an important role in the survival of the IFS creative system. The following
algorithm, known as the chaos game, was described to a wide audience in Byte
Magazine in 1988, and successfully dispersed IFS codes to the computer science
community. It helped ensure that the IFS creative system would have attribute
(V).
De�ne a random orbit fxkg1k=0 of a point x0 2 X under F = (X; f1; :::; fN )

by xk = f�k(xk�1), where �k 2 f1; 2; :::; Ng is chosen, independently of all other
choices, by rolling an N -sided die. The random orbit is associated with � 2 
. If
the underlying space is two-dimensional and F is contractive, then it is probable
that a picture of the attractor of F , accurate to within viewing resolution, will be
obtained by plotting fxkg10

7

k=100 on a digital display device.
Why does this Markov chain Monte Carlo algorithm work? The following theo-

rem, implicit in [8], tells us how we can think of the attractor of a contractive IFS
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Figure 4. The original pseudocode from Byte Magazine (Jan
1988) for implementing Chaos Game algorithm to obtain an image
of the attractor of an IFS on R2. Notice the small number of it-
erations used! Nowdays, usually, I use 107 iterations, and discard
the �rst thousand points. On the right is a sketch of a 2�variable
tree obtained by a generalization of the chaos game.

Figure 5. From left to right this picture shows: the result of
9000 iterations of the chaos game algorithm applied to a projective
IFS; the result of 107 iterations; a small picture of a �ower; and a
rendered close-up of the attractor. In the latter image the colours
were obtained with the aid of a fractal transformation from the
attractor to the small picture of the yellow �ower.

as being the !-limit set of almost any random orbit. A direct proof can be found
in [31].

Theorem 3. Let fxkg1k=0 be a random orbit of a contractive IFS. With probability
one

lim
K!1

[1k=K fxkg = A;

where the limit is taken with respect to the Hausdor¤ metric.

Pictures, calculated using the chaos game algorithm, of the attractor of a pro-
jective IFS (R; f1; f2; f3; f4) are shown in the left-most two panels of Figure 5. You
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can visualize an approximation to the stationary probability measure of the sto-
chastic process, implicit in the chaos game, in the left-hand image. This measure
depends on the strictly positive probabilities associated with the maps, but its sup-
port, the attractor, does not! Measure theory aspects of IFS are not considered in
this article, but it is nice to see one way in which the topic arises.

5. Addresses, and transformations between attractors

In this section we deepen our understanding of attractors. We discover informa-
tion about the relationship between IFS codes and the topology of attractors, and
the relationships between di¤erent attractors. This information helps to classify
our diverse plants, attribute (I), and leads into real applications in art and biology,
attribute (V). Good book-keeping is the key.
The space 
 = f1; 2; :::; Ng1 with the product topology plays a fundamental role

in IFS theory and in this article. We write � = �1�2::: to denote a typical element
of 
. We will use the notation f�1�2:::�k := f�1 � f�2 � ::: � f�k , �jk = �1�2:::�k;
and f�1�2:::�k = f�jk for any � 2 
 and k = 1; 2; ::: .
The following theorem suggests our plants can have intricate topological struc-

tures and suggests that symbolic dynamics are involved, thereby adding a lusher
interpretation of attribute (I).

Theorem 4. [18] Let F = (X; f1; :::; fN ) be a contractive IFS, with attractor A.
Let x 2 X. A continuous surjection � : 
 ! A, independent of x, is well-de�ned
by � (�) = limk!1 f�jk(x); the convergence is uniform for (�; x) 2 
�B, for any
B 2 H.

The set of addresses of a point x 2 A is de�ned to be the set ��1 (x), and
de�nes an equivalence relation s on 
: For example, the attractor of the IFS
(R; f1(x) = x=2; f2(x) = x=2 + 1=2) is the closed interval [0; 1]: You may check that
��1(0) =

�
1 := 1111:::

	
; ��1(1) =

�
2
	
; ��1(1=2) = f12; 21g; and ��1(1=3) =�

12
	
. Some points of an attractor have one address while others have multiple

distinct addresses. The topology on A is the identi�cation topology on 
 induced
by the continuous map � : 
! A. In this paper we refer to the set of equivalence
classess induced by s on 
 as the address structure of the IFS. Figure 3 contrasts
the address structures of a corresponding pair of bilinear and projective IFSs.
We can think of the topology of an attractor A as being that of 
 with all points

in each equivalence class glued together; that is, A is homeomorphic to 
= s.
Simple examples demonstrate that the address structure can change in complicated
ways when a single parameter is varied: the topologies of attractors, our plants, in
contrast to their shapes, do not in general depend continuously on their IFS codes.
By restricting to appropriate families of projective or bilinear IFSs, with known
address structures, control of the topology of attractors becomes feasible.
A point on an attractor may have multiple addresses. We select the "top" address

to provide a unique assignment; the top address is the one closest to 1 = 1111::: in
lexographic ordering. Each element of the address structure of an IFS is represented
by a unique point in 
. This choice is serendipitous, because the resulting set of
addresses, called the tops space, is shift invariant, and so yields a link between
our plants, symbolic dynamics, and information theory, attribute (IV), see [5] and
references therein.



10 MICHAEL F. BARNSLEY

Figure 6. Three renderings of a close-up of the attractor in Fig-
ure 5 computed using a coupled version of the chaos game and
a fractal transformation. On the left the computation has been
stopped early, yielding a misty e¤ect. Di¤erent aspects of the frac-
tal transformation are revealed by applying it to di¤erent pictures.

We de�ne a natural map from an attractor AF of an IFS F to the attractor AG
of an IFS G, each with the same number of maps, by assigning to each point of AF
the point of AG whose set of addresses includes the top address of the point in AF .
This provides a map TFG : AF ! AG called a fractal transformation. When the
address structures of AF and AG are the same, this map is a homeomorphism. Since
fractal transformations can be readily computed by means of a coupled version of
the chaos game, applications to art and geometric modelling become feasible and
the IFS creative system tests new forms and environments, attribute (V).
Let R � R2 denote a �lled unit square. Let p : R ! C be a picture (function);

that is, p is a mapping from R into a color space C. A color space is a set of points
each of which is associated with a unique color. In computer graphics a typical
color space is C = f0; 1; :::; 255g3, where the coordinates of a point represent digital
values of red, green and blue. The graph of a picture function may be represented
by a colorful picture supported on R. Next time you see a picture hanging on a
wall, imagine that it is instead, an abstraction, a graph of a picture function. More
generally, we allow the domain of a picture function to be an arbitrary subset of
R2:
For example, in the right-hand image in Figure 5 we have rendered the graph

of ep : AF ! C obtained by choosing p to correspond to the picture of the yellow
�ower, G to be an a¢ ne IFS such that fgn (R)g4n=1 is a set of rectangular tiles
with [gn (R) = R, and F to be the projective IFS whose attractor is illustrated in
black. In Figure 6 we show other renderings of a portion of the attractor, obtained
by changing the picture p and, in the left-hand image, by stopping the chaos game
algorithm early�the pictures are all computed by using a coupled variant of the
chaos game. Since ep = p � TFG one can infer something about the nature of fractal
transformations looking at such pictures. By panning the source picture p it is
possible to make fascinating video sequences of images. You can see some yourself
with the aid of SFVideoShop [32]. In the present example you would quickly infer
that TFG is not continuous but that it is not far from being so: it may be continuous
except across a countable set of arcs.
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Figure 7. (i) The adjustable points a; b; c used to de�ne a family
of a¢ ne iterated function systems F = (R2; f1; f2; f3; f4) with con-
stant address structure; (ii) a picture supported on the attractor of
an IFS belonging to the family; (iii) the same picture, transformed
under a fractal homeomorphism of the form TFG = �G � �F where
F and G are two IFSs belonging to the family.

6. The art of fractal homeomorphism

A¢ ne and bilinear iterated function systems can be used to provide a wide
variety of parameterized families of homeomorphisms on two-dimensional regions
with polygonal boundaries such as triangles and quadrilaterals. We use them to
illustrate the application of the IFS creative system to a new artform. In e¤ect this
application is itself a new creative system, for artists. This provides an illustration
of attribute (VI): creative systems beget creative systems.
For example, let A, B, and C denote three non-colinear points in R2. Let c denote

a point on the line segment AB, let a denote a point on the line segment BC, and
let b denote a point on the line segment CA, such that fa; b; cg \ fA;B;Cg = ?;
see Figure 7(i). Let F =

�
R2; f1; f2; f3; f4

�
be the unique a¢ ne IFS such that

f1(ABC) = caB, f2(ABC) = Cab, f3(ABC) = cAb, and f4(ABC) = cab,

where we mean for example that f1 maps A to c, B to a, and C to B, see Figure
7(i). For reference, let us write F = F�;�; where � = jBcj=jABj; � = jCaj=jBCj;
and  = jAbj=jCAj. The attractor of F�;�; is the �lled triangle T with vertices
at A, B, and C. Then F�;�; is contractive IFS, for each (�; �; ) 2 (0; 1)3, with
respect to a metric that is Lipshitz equivalent to the Euclidean metric, by Theorem
2. Its address structure C�;�; is independent of �; �; , see [5] section 8.1.
Figure 7(ii) illustrates a picture p : T ! C; it depicts fallen autumn leaves. Fig-

ure 7(iii) illustrates the picture ep = p�TFG ; namely the result of applying the home-
omorphism TFG to the picture p, where F = F0:45;0:45;0:45 and G = F0:55;0:55;0:55.
The transformation in this example is area-preserving because corresponding tiles
have equal areas.
A similar result applies to families of bilinear IFSs. For example Figure 3 de-

�nes a family of bilinear IFSs, Fv, parameterized by the vector of points v =
(E;F;G;H; I): This family has constant address structure for all values of v for
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Figure 8. Example of a fractal homeomorphism generated by two
IFSs of four bilinear transformations. The attractor of each trans-
formation is the unit square.

Figure 9. Before (left) and after a fractal homeomorphism.

which Fv is contractive and can thus be used to provide a family of homeomor-
phisms Tv;w : R ! R. An illustration of the action of Tv;w on a picture of Aus-
tralian heather is given in Figure 8. In this case the parameters v and w both
correspond to a¢ ne IFSs. What is remarkable in this case, and many like it, is that
the transformed picture looks so realistic. Can you tell which is the original?
Figure 9 illustrates a homeomorphic fractal transformation generated by a pair of

bilinear IFSs on R. In this case N = 12: The original image is a digital photograph
of a lemon tree and wall�owers in my garden in Canberra. The �nal image was
printed out on thick acid-free rag paper by a professional printing company, using
vivid pigment inks, at a width of approximately 5ft and a height of 3ft 6ins. It
represents a fusion of the colors of nature and mathematics; it provokes wonder in
me, a sense of the pristine and inviolate, a yearning to look and look ever closer,
see Figure 10.
I have used such extraordinary transformations to generate works for three suc-

cessful (most of the pictures are sold) art shows, in Canberra (Australia, April
2008), in Bellingham (Washington State, April 2008), and in Gainesville (Florida,
March 2009).
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Figure 10. Detail from Figure 9 showing not only the vibrant
colors of nature, but also the wide range of stretching and squeezing
achieved in this relatively simple fractal transformation.

7. Superfractals

In this section we illustrate attribute (VI). We show how IFS theory begets a new
creative system via a higher level of abstraction. The new framework is suitable
for mathematical modelling of the geometry of a multitude of naturally occurring,
readily observable structures. It also has applications to the visual arts.
The new system has some remarkable properties. Its attractor is a set of in-

terrelated sets that can be sampled by a variant of the chaos game algorithm, as
illustrated in Figure 12. This algorithm is born fully formed and is the key to
applications. The geometry and topology of the interrelated sets can be controlled
when appropriate generalized IFSs are used. In particular, through the concepts
of V -variability [7] and superfractals, we are able to form a practical bridge be-
tween deterministic fractals (such as some of the IFS attractors in previous sections)
and random fractal objects (such as statistically self similar curves that represent
Brownian motion).

7.1. V�variability. Here is a biological way to think of "V�variability". Imagine
a tree that grows with this property. If you were to break o¤ all of the branches of
any one generation and classify them, you would �nd that they were of at most V
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Figure 11. An element of a 2-variable superfractal is shown on
the left. If you look closely at it, you will see that it is made of
exactly two distinct(up to translation, re�ection and rotation) sub-
objects of half the linear dimension. (The two objects immediately
to the right of the �rst one.) And, if you look even closer, you will
see that it is made of two sub-objects of one-quarter the linear
dimension, and so on.

di¤erent types. By "generation" I mean that you are able to think of the tree as
having older and younger branches, that is, some that started to grow during year
one, sub-branches that began during year two and so on. The tree is very old. By
"type" I mean something like "belongs to a particular conjugacy class". The type
may change from generation to generation, but the number V is �xed and as small
as possible. Then I will call the imagined tree "V�variable". Figure 4 includes
an illustration of a 2�variable tree, where the younger branches start higher up
the tree. Again, consider a population of annual plants belonging to a species that
admits S distinct possible genotypes. If the number of distinct genotypes in each
generation is bounded above by V then (in circumstances where V is signi�cantly
smaller than S) I would call this population "V�variable". But the mathematical
de�nition relates to a property of attractors of certain IFSs. Figure 11 illustrates
a 2�variable fractal subset of the Euclidean plane: it is a union of two tiles of half
its size: it is also a union of at most two tiles of a quarter its size, and so on.
Let F = (X; f1; :::; fN ) be an IFS of functions fn that are contractive with

respect to the metric d on X. If G = (X; f!1 ; ::; f!l) for some choice of indices
1 � !1 < !2 < ::: < !l � N , then we say that G is a subIFS of F :
Given an IFS G = (X; g1; :::; gM ) and a sequence of indices � = �1�2:::�M ; where

each �m belongs to f1; 2; :::; V g we can construct a mapping G(�) : HV ! H by
de�ning

G(�)(B) = [mgm
�
B�m

�
; for all B = (B1; B2; :::; BV ) 2 HV .

In a similar manner, given a set of subIFSs fG1; :::;GLg of F , each consisting of
M functions, we can construct mappings from HV to itself. Let � = �1�2:::�V 2
f1; 2; :::; LgV , let � be a V �M matrix whose entries belong to f1; 2; :::; V g, and
here let �v denote the v

th row of �: Then we de�ne a mapping G(�;�) : HV ! HV



THE LIFE AND SURVIVAL OF MATHEMATICAL IDEAS 15

by

G(�;�)(B) = (G(�1)�1 (B);G(�2)�2 (B); :::;G(�V )�V (B)):

We denote the sequence of all such mappings by fHj : j 2 Jg where J is the set of
all indices (�;�), in some order. We call G(V ) =

�
HV ; fHj : j 2 Jg

�
the V�variable

superIFS associated with the set of subIFSs fGlgLl=1 of F .
We write Bv to denote the vth component of B 2 HV : If the space HV is equipped

with the metric D(B;C) := maxv fh(Bv; Cv)g where h is the Hausdor¤ metric on
H, then

�
HV ; D

�
is a complete metric space. The following theorem summarizes

basic information about G(V ): More information is presented in [4] and [7].

Theorem 5. [7] Let G(V ) denote the V�variable superIFS
�
HV ; fHj : j 2 Jg

�
.

(i) If the underlying IFS F is contractive then the IFS G(V )is contractive.
(ii) The unique attractor A(V ) 2 H

�
HV
�
of G(V ) consists of a set of V�tuples

of compact subsets of X, and A(V ) := fBv : B 2 A(V ); v = 1; 2; :::; V g = fBv :
B 2 A(V )g for all v = 1; 2; :::; V . (Symmetry of the superIFS with respect to the
V coordinates causes this.) Each element of A(V ) is a union of transformations,
belonging to F , of at most V other elements of A(V ):
(iii) If fAkg1k=0 denotes a random orbit of A0 2 HV under G(V ) and Ak 2 H de-

notes the �rst component of Ak, then (with probability one) limK!1 [1k=K fAkg =
A(V ) where the limit is taken with respect to the Hausdor¤ metric on H(H(X)).

Statement (i) implies that G(V ) possesses a unique attractor A(V ) and that we
can describe it in terms of the chaos game. This technique is straightfoward to
apply, since we need only to select independently at each step, the indices � and �;
the functions themselves are readily built up from those of the underlying IFS F .
Statement (ii) tells us that it is useful to focus on the set A(V ) of �rst components

of elements of A(V ). It also implies that, given anyA 2 A(V ) and any positive integer
K, there exist A1; A2; :::; AV 2 A(V ) such that A = [l2f1;2;:::;V g [�2
 f�jK(Al).
That is, at any depthK, A is a union of contractions applied to V sets, all belonging
to A(V ), at most V of which are distinct. In view this property, the elements of
A(V ) are called V�variable fractal sets and we refer to A(V ) itself as a superfractal.
Statement (iii) tells us that we can use random orbits fAkg1k=0 of A0 2 HV under

G(V ) to sample the superfractal A(V ).
The idea of address structures, tops and fractal transformations can be extended

to the individual sets that comprise A(V ), see [4]. We are thus able to render colorful
images of sequences of elements of A(V ) generated by a more elaborate chaos game
involving, at each step a (V + 1)�tuple of sets, one of which is used to de�ne the
picture whose colors are used to render the other sets.
Figure 12 illustrates elements taken from such an orbit. In this case a 2�variable

superIFS is used: it consists of two subIFS of a projective IFS F , consisting of �ve
functions, detailed in [4]. The fern-like structure of all elements of the corresponding
superfractal is ensured by a generalized version of the collage theorem.

7.2. The problem solved by superfractals. The diverse forms that illustrate a
successful idea, the plants of a creative system, may change as time goes forward.
The ideas of an earlier era of geometry, popular in applications included cissoids,
strophoids, nephroids, and astroids: more recently you would hear about manifolds,
Ricci curvature, and vector bundles; today you are just as likely to hear about
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Figure 12. Elements of a 2�variable superfractal, rendered as in
Figure 5.

fractals. Why? As technology advances, some applications become extinct, and
new ones emerge.
In The Fractal Geometry of Nature, [24], Mandelbrot argues that random frac-

tals provide geometrical models for naturally occurring shapes and forms, such as
coastlines, clouds, lungs, trees, and Brownian motion. A random fractal is a sta-
tistically self-similar object with non-integer Hausdor¤ dimension. Although there
are mathematical theories for families of random fractals, see for example [25], they
are generally cumbersome to use in geometric modelling applications.
For example, consider the problem of modelling real ferns: ferns look di¤erent at

di¤erent levels of magni�cation, and the locations of the fronds are not according
to some strictly deterministic pattern, as in a geometric series, but rather they have
elements of randomness. It seems that a top-down hierarchical description, starting
at the coarsest level, and working down to �ner scales, is needed to provide speci�c
geometrical information about structure at all levels of magni�cation. This presents
a problem: clearly it is time consuming and expensive in terms of the amount of
data needed, to describe even a single sample from some statistical ensemble of
such objects.
Superfractals solve this problem by restricting the type of randomness to be V -

variable. This approach enables the generalized chaos game algorithm, described
above, to work, yielding sequences of samples from a probability distribution on
V -variable sets belonging to a superfractal. In turn, this means that we can approx-
imate fully random fractals because, in the limit as V tend to in�nity, V -variable
fractals become random fractals in the sense of [25], see for example [7], Theorem
51.
Thus, we are able to compute arbitrarily accurate sequences of samples of ran-

dom fractals. Furthermore we have modelling tools, obtained by generalizing those
that belong to IFS theory, such as collage theorem and fractal transformations,
which extend in natural ways to the V -variable setting. In some cases the Haus-
dor¤ dimension of these objects can also be speci�ed as part of the model. This
provides an approach to modelling many naturally occurring structures that is both
mathematically satisfying and computationally workable. In particular, we see how
the IFS creative system begat a new, even more powerful system, with diverse po-
tential applications. This completes my argument that iterated function systems
comprise a creative system.
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8. Further reading

I would have liked to tell you much more about IFS theory. But this is not a
review article, even of some of my own work. It does not touch the full range of the
subject, let alone the mathematics of fractal geometry as a whole. The contents
were chosen primarily to illustrate the idea of a mathematical creative system.
To survey mathematical fractal geometry, I mention the series of four conference

proceedings [36], [37], [38], and [39], carefully edited by Christoph Bandt, Martina
Zähle and others. The books by Falconer, for example [14] and [15], are good
textbooks for core material. A recent development has been the discovery of how
to construct harmonic functions and a calculus on certain fractal sets, see [20].
This was reported in the Notices [33]. A light introduction is [34]. Fractals and
number theory is an important area; see for example [22], [11], and [23]. The topic
of noncommutative fractal geometry is another fascinating new area [21]. Fractal
geometry is rich with creative possibilities.

9. Conclusion

In this essay I have illustrated the notion that mathematical ideas that survive
are creative systems in their own right, with attributes that parallel some of natural
evolution.
Creative systems de�ne, via their DNA, diverse forms and structures. There are

three concepts here: seeds, plants, and diversity. Individual plants are products of
the system, representatives of its current state and utility. The system itself may
remain constant but the plants evolve, adapting to new generations of minds. The
IFS creative system lives in my mind. But mainly I watch its plants: ones that
preoccupy me now are not the same as the ones that I looked at years ago; the
crucial element is the creative system, not the fractal fern.
Plants provide the �rst wave of conquest of new environments; an adapted version

of the underlying new idea may follow later. The diversity of plants suggests a
multitude of possibilities. Their seeds get into the minds of engineers and scientists.
Later, the underlying idea, the creative system itself, may take hold.
I think of a good mathematical mind, a strong mathematics department, and

a successful conference, as each being like Darwin�s bank, a rich ecosystem, a fer-
tile environment where ideas interact and diverse species of plants are in evidence.
Some of these plants may be highly visible because they can be represented using
computer graphics, while others are more hidden: you may only see them in collo-
quia, a few glittering words that capture and describe something wonderful, jump
from brain to brain and there take root. (I think of the �rst time I heard about
the Propp-Wilson algorithm.)
A good mathematical idea is a creative system, a source of new ideas, as rich in

their own right as the original. The idea that survives is one that takes root in the
minds of others: it does so because it is accessible and empowering. Such an idea
is likely to lead to applications, but this applicability is more a symptom that the
idea is a creative system, rather than being causative. A good idea allows, invites,
surprises, simpli�es, and shares itself without ever becoming smaller; as generous,
mysterious, and bountiful as nature itself.
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9 A CHARACTERIZATION OF HYPERBOLIC

AFFINE ITERATED FUNCTION SYSTEMS

ROSS ATKINS, MICHAEL F. BARNSLEY, ANDREW VINCE,
AND DAVID C. WILSON

Abstract. The two main theorems of this paper provide a
characterization of hyperbolic affine iterated function systems
defined on R

m
. Atsushi Kameyama (Distances on Topological

Self-Similar Sets, Proceedings of Symposia in Pure Mathe-
matics, Volume 72.1, 2004) asked the following fundamental
question: given a topological self-similar set, does there exist
an associated system of contraction mappings? Our theorems
imply an affirmative answer to Kameyama’s question for self-
similar sets derived from affine transformations on R

m.

1. Introduction

The goal of this paper is to prove and explain two theorems
that classify hyperbolic affine iterated function systems defined on
R

m. One motivation was the question: when are the functions of
an affine iterated function systems (IFS) on R

m contractions with
respect to a metric equivalent to the usual euclidean metric?

Theorem 1.1 (Classification for Affine Hyperbolic IFSs). If F =
(Rm; f1, f2, ..., fN ) is an affine iterated function system, then the

following statements are equivalent.

(1) F is hyperbolic.

(2) F is point-fibred.

(3) F has an attractor.

(4) F is a topological contraction with respect to some convex

body K ⊂ R
m.

Date: June 30, 2009.
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(5) F is non-antipodal with respect to some convex body K ⊂
R

m.

Statement (1) is a metric condition on an affine IFS, statements
(2) and (3) are in terms of convergence, and statements (4) and (5)
are in terms of concepts from convex geometry. The terms con-
tractive, hyperbolic, point-fibred, attractor, topological contrac-
tion, and non-antipodal are defined in Definitions 2.2, 2.3, 2.5,
2.7, 5.8, 6.5, respectively. This theorem draws together some of
the main concepts in the theory of iterated function systems. Ba-
nach’s classical Contraction Mapping Theorem states that a con-
traction f on a complete metric space has a fixed point x0 and that
x0 = limk→∞ f◦k(x), independent of x, where ◦k denotes the kth

iteration. The notion of hyperbolic generalizes to the case of an IFS
the contraction property, namely an IFS is hyperbolic if there is a
metric on R

m, equivalent to the usual one, such that each function
in the IFS is a contraction. The notion of point-fibred, introduced
by Kieninger [9], is the natural generalization of the limit condition
above to the case of an IFS. While traditional discussions of fractal
geometry focus on the existence of an attractor for a hyperbolic
IFS, Theorem 1.1 establishes that the more geometrical (and non-
metric) assumptions - topologically contractive and non-antipodal
- can also be used to guarantee the existence of an attractor. Ba-
sically a function f : R

m → R
m is non-antipodal if certain pairs

of points (antipodal points) on the boundary of K are not mapped
by f to another pair of antipodal points.

Since the implication (1) ⇒ (2) is the Contraction Mapping The-
orem when the IFS contains only one affine mapping, Theorem 1.1
contains an affine IFS version of the converse to the Contraction
Mapping Theorem. Thus, our theorem provides a generalization of
results proved by L. Janos [7] and S. Leader [11]. Such a converse
statement in the IFS setting has remained unclear until now.

Although not every affine IFS F = (Rm; f1, f2, ..., fN ) is hyper-
bolic on all of R

m, the second main result states that if F has a
coding map (Definition 2.4), then F is always hyperbolic on some
affine subspace of R

m.

Theorem 1.2. If F = (Rm; f1, f2, ..., fN ) is an affine IFS with a

coding map π : Ω → R
m, then F is hyperbolic on the affine hull of
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π(Ω). In particular, if π(Ω) contains a non-empty open subset of

R
m, then F is hyperbolic on R

m.

Although he used slightly different terminology, Kameyama [8]
posed the following FUNDAMENTAL QUESTION : Is an affine

IFS with a coding map π : Ω → R
m hyperbolic when restricted to

π(Ω)? An affirmative answer to this question follows immediately
from Theorem 1.2.

Our original motivation, however, was not Kameyama’s question,
but rather a desire to approximate a compact subset T ⊂ R

m as the
attractor A of an iterated function system F = (Rm; f1, f2, ...fN ),
where each fn : R

m → R
m is affine. This task is usually done using

the “collage theorem” [1], [2] by choosing an IFS F so that the
Hausdorff distance dH(T,F (T )) is small. If the IFS F is hyperbolic,
then we can guarantee it has an attractor A such that dH(T,A) is
comparably small. But then the question arises: how does one
know if F is hyperbolic?

The paper is organized as follows. Section 2 contains notation,
terminology, and definitions that will be used throughout the pa-
per. Section 3 contains examples and remarks relating iterated
function systems and their attractors to Theorems 1.1 and 1.2. In
Example 3.1 we show that an affine IFS can be point-fibred, but
not contractive under the usual metric on R

m. Thus, some kind
of remetrization is required for the system to be contractive. In
Example 3.2 we show that an affine IFS can contain two linear
maps each with real eigenvalues all with magnitudes less than 1,
but still may not be point-fibered. Thus, Theorem 1.1 cannot be
phrased only in terms of eigenvalues and eigenvectors of the indi-
vidual functions in the IFS. Indeed, in Example 3.3 we explain how,
given any integer M > 0, there exists a linear IFS

(

R
2;L1, L2

)

such
that each operator of the form Lσ1

Lσ2
...Lσk

, with σj ∈ {1, 2} for
j = 1, 2, ..., k, and k ≤ M, has spectal radius less than one, while
L1L

M
2 has spectral radius larger than one. This is related to the

joint spectral radius [16] of the pair of linear operators L1, L2 and
to the associated finiteness conjecture, see for example [17]. In Sec-
tion 8 we comment on the relationship between the present work
and recent results concerning the joint spectral radius of finite sets
of linear operators. Example 3.4 provides an affine IFS on R

2 that
has a coding map π, but is not point-fibred on R

2, and hence by
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Theorem 1.1, not hyperbolic on R
2. It is, however, point-fibred and

hyperbolic when restricted to the x-axis, which is the affine hull of
π(Ω), thus illustrating Theorem 1.2.

For the proof of Theorem 1.1 we provide the following roadmap.

(1) The proof that statement (1) ⇒ statement (2) is provided
in Theorem 4.1.

(2) The proof that statement (2) ⇒ statement (3) is provided
in Theorem 4.3.

(3) The proof that statement (3) ⇒ statement (4) is provided
in Theorem 5.10.

(4) The proof that statement (4) ⇒ statement (5) is provided
in Proposition 6.6.

(5) The proof that statement (5) ⇒ statement (1) is provided
in Theorem 6.7.

Theorem 1.2 is proved in section 7.

2. Notation and Definitions

We treat R
m as a vector space, an affine space, and a metric

space. We identify a point x = (x1, x2, ..., xm) ∈ R
m with the

vector whose coordinates are x1, x2, ..., xm. We write 0 ∈ R
m for

the point in R
m whose coordinates are all zero. The standard basis

is denoted {e1, e2, . . . , em}. The inner product between x, y ∈ R
m is

denoted by 〈x, y〉. The 2-norm of a point x ∈ R
m is ‖x‖2 =

√

〈x, x〉,
and the euclidean metric dE : R

m × R
m → [0,∞) is defined by

dE(x, y) = ‖x − y‖2 for all x, y ∈ R
m. The following notations,

conventions, and definitions will also be used throughout this paper:

(1) A convex body is a compact convex subset of R
m with non-

empty interior.
(2) For a set B in R

m, the notation conv(B) is used to denote
the convex hull of B.

(3) For a set B ∈ R
m, the affine hull, denoted aff(B), of B is the

smallest affine subspace containing B, i.e., the intersection
of all affine subspaces containing B.

(4) The symbol H will denote the nonempty compact subsets
of R

m, and the symbol dH will denote the Hausdorff metric
on H. Recall that (Rm, dH) is a complete metric space.
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(5) A metric d on R
m is said to be Lipschitz equivalent to dE

if there are positive constants r and R such that

r dE(x, y) ≤ d(x, y) ≤ RdE(x, y),

for all x, y ∈ R
m. If two metrics are Lipschitz equivalent,

then they induce the same topology on R
m, but the converse

is not necessarily true.
(6) For any two subsets A and B of R

m the notation A−B :=
{x − y : x ∈ A and y ∈ B} is used to denote the pointwise
subtraction of elements in the two sets.

(7) For a positive integer N, the symbol Ω = {1, 2, . . . ,N}∞ will
denote the set of all infinite sequences of symbols {σk}

∞
k=1

belonging to the alphabet {1, 2, . . . ,N}. The set Ω is en-
dowed with the product topology. An element of σ ∈ Ω
will also be denoted by the concatenation σ = σ1σ2σ3 . . . ,
where σk denotes the kth component of σ. Recall that since
Ω is endowed with the product topology, it is a compact
Hausdorff space.

Definition 2.1 (IFS). If N > 0 is an integer and fn : R
m → R

m,
n = 1, 2, . . . ,N, are continuous mappings, then F = (Rm; f1, f2, ..., fN )
is called an iterated function system (IFS). If each of the functions
in F is an affine map on R

m, then F is called an affine IFS.

Definition 2.2 (Contractive IFS). An IFS F = (Rm; f1, f2, ..., fN )
is contractive when each fn is a contraction. Namely, there is a
number αn ∈ [0, 1) such that dE(fn(x), fn(y)) ≤ αndE(x, y) for all
x, y ∈ R

m, for all n.

Definition 2.3 (Hyperbolic IFS). An IFS F = (Rm; f1, f2, ..., fN )
is called hyperbolic if there is a metric on R

m Lipschitz equivalent
to the given metric so that each fn is a contraction.

Definition 2.4 (Coding Map). A continuous map π : Ω → R
m is

called a coding map for the IFS F = (Rm; f1, f2, ..., fN ) if, for each
n = 1, 2, . . . ,N, the following diagram commutes,

(2.1)

Ω
sn→ Ω

π ↓ ↓ π
R

m →
fn

R
m

where the symbol sn : Ω → Ω denotes the inverse shift map defined
by sn(σ) = nσ.
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The notion of a coding map is due to J. Kigami [10] and A.
Kameyama [8].

Definition 2.5 (Point-Fibred IFS). An IFS F = (Rm; f1, f2, ..., fN )
is point-fibred if, for each σ = σ1 σ2 σ3 · · · ∈ Ω, the limit on the right
hand side of

(2.2) π(σ) := lim
k→∞

fσ1
◦ fσ2

◦ · · · ◦ fσk
(x),

exists, is independent of x ∈ R
m for fixed σ, and the map π : Ω →

R
m is a coding map.

It is not difficult to show that 2.2 is the unique coding map of
a point-fibred IFS. Our notion of a point-fibred iterated function
system is similar to Kieninger’s Definition 4.3.6 [9], p.97. However,
we work in the setting of complete metric spaces whereas Kieninger
frames his definition in a compact Hausdorff space.

Definition 2.6 (The Symbol F(B) for an IFS). For an IFS F =
(Rm; f1, f2, ..., fN ) define F : H →H by

F(B) =

N
⋃

n=1

fn(B).

(We use the same symbol F both for the IFS and the mapping.)
For B ∈ H, let F◦k(B) denote the k-fold composition of F , i.e., the
union of fσ1

◦ fσ2
◦ · · · ◦ fσk

(B) over all words σ1σ2 · · · σk of length
k.

Definition 2.7 (Attractor for an IFS). A set A ∈ H is called an
attractor of an IFS F = (Rm; f1, f2, ..., fN ) if

(2.3) A = F(A)

and

(2.4) A = lim
k→∞

F◦k(B),

the limit with respect to the Hausdorff metric, for all B ∈ H.

If an IFS has an attractor A, then clearly A is the unique attrac-
tor. It is well known that a hyperbolic IFS has an attractor. An
elegant proof of this fact is given by J. Hutchinson [6]. He observes
that a contractive IFS F induces a contraction F : H → H, from
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which the result follows by the contraction mapping theorem. See
also M. Hata [5] and R. F. Williams [18].

In section 4 it is shown that a point-fibred IFS F has an attractor
A, and, moreover, if π is the coding map of F , then A = π(Ω).
Often σ is considered as the “address” of the point π(σ) in the
attractor. In the literature on fractals (for example J. Kigami [10])
there is an approach to the concept of a self-similar system without
reference to the ambient space. This approach begins with the idea
of a continuous coding map π and, in effect, defines the attractor
as π(Ω).

3. Examples and Remarks on Iterated Function Systems

This section contains examples and remarks relevant to Theo-
rems 1.1 and 1.2.

EXAMPLE 3.1 [A Point-fibred, not Contractive IFS] Consider
the affine IFS consisting of a single linear function on R

2 given by
the matrix

f =

(

0 2
1
8 0

)

.

Note that the eigenvalues of f equal ±1
2 . Since

lim
n→∞

f◦2n = lim
n→∞

T−1

(

(1
2 )n 0
0 (−1

2 )n

)

T =

(

0 0
0 0

)

,

where T is the change of basis matrix, this IFS is point-fibred.
However, since

f

(

0
1

)

=

(

2
0

)

,

the mapping is not a contraction under the usual metric on R
2.

Theorem 1.1, however, guarantees we can remetrize R
2 with an

equivalent metric so that f is a contraction.

EXAMPLE 3.2 [An IFS with Point-Fibred Functions that is not
Point-Fibred] In the literature on affine iterated function systems,
it is sometimes assumed that the eigenvalues of the linear parts
of the affine functions are less than 1 in modulus. Unfortunately,
this assumption is not sufficient to imply any of the five statements
given in Theorem 1.1. While the affine IFS (Rm; f) is point-fibred
if and only if the eigenvalues of the linear part of f all have moduli
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strictly less than 1, an analogous statement cannot be made if the
number of functions in the IFS is larger than 1.

Consider the affine IFS F =
(

R
2; f1, f2

)

, where

f1 =

(

0 2
1
8 0

)

and f2 =

(

0 1
8

2 0

)

.

As noted in Example 3.1

lim
n→∞

f◦n
1 u = lim

n→∞
f◦n
2 u =

(

0
0

)

for any vector u. Thus, both F1 =
(

R
2; f1

)

and F2 =
(

R
2; f2

)

are
point-fibred. Unfortunately, their product is the matrix

f1◦f2 =

(

4 0
0 1

64

)

, so that lim
n→∞

(f1◦f2)
◦n

(

1
0

)

= lim
n→∞

(

4n

0

)

= +∞.

Thus, the IFS F =
(

R
2; f1, f2

)

fails to be point-fibred.

Remark 3.1.

While it is true that (1) ⇒ (2) in Theorem 1.1 even without
the assumption that the IFS is affine, the converse is not true in
general. Kameyama [8] has shown that there exists a point-fibred
IFS that is not hyperbolic. We next give an example of an affine
IFS with a coding map that is not point-fibred. Thus, the set of
IFSs (with a coding map) strictly contains the set of point-fibred
IFSs which, in turn, strictly contains the set of hyperbolic IFSs.

EXAMPLE 3.3 [The Failure of a Finite Eigenvalue Test to Imply
Point-Fibred] Consider the linear IFS F =

(

R
2;L1, L2

)

, where

L1 =

(

0 2
1
8 0

)

and L2 =

(

a cos θ −a sin θ
a sin θ a cos θ

)

= aRθ,

where Rθ denotes rotation by angle θ, and 0 < a < 1. Then Ln
1 has

eigenvalues ±1/2n while the eigenvalues of Ln
2 both have magnitude

an < 1. For example, if we choose θ = π/8 and a = 31/32 then it is
readily verified that the eigenvalues of L1L2 and L2L1 are smaller
than one in magnitude and that one of the eigenvalues of L1L2L2

is 1.4014... . Hence, in this case, the magnitudes of the eigenvalues
of the linear operators L1, L2, L2

1, L1L2, L2L1, L2
2 are all less than

one, but ‖(L1L2L2)
n x‖ does not converge when x ∈ R

2 is any
eigenvector of L1L2L2 corresponding to the eigenvalue 1.4014.... It
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follows that the IFS
(

R
2;L1, L2

)

is not point-fibred. By using the
same underlying idea it is straightforward to prove that, given any
positive integer M , we can choose a close to 1 and θ close to 0 in
such a way that the eigenvalues of Lσ1

Lσ2
...Lσk

, (where σj ∈ {1, 2}
for j = 1, 2, ..., k, with k ≤ M) are all of magnitude less than one,
while L1L

M
2 has an eigenvalue of magnitude larger than one.

EXAMPLE 3.4 [A non-Hyperbolic Affine IFS] Let F =
(

R
2; f0, f1

)

,
where

f0(x1, x2) = (
1

2
x1, x2), f1(x1, x2) = (

1

2
x1 +

1

2
, x2).

This IFS has a coding map π with Ω = {0, 1}∞ and π(σ) = (0.σ, 0),
where 0.σ is considered as a base 2 decimal. Since limk→∞ fσ1

◦
fσ2

◦ · · · ◦fσk
(x1, x2) = (0.σ, x2) depends on the choice of the points

(x1, x2) ∈ R
2, this IFS cannot be point-fibred. Hence, by Theo-

rem 1.1, the IFS F is also not hyperbolic. However, it is clearly
hyperbolic when restricted to the x-axis, the affine hull of unit inter-
val π(Ω) = [0, 1]×{0}. Thus, this example illustrates Theorem 1.2.

A key fact used in the proof of Theorem 1.1 is that the set of an-
tipodal points in a convex body equals the set of diametric points.
The definitions of antipodal and diametric points are given in Def-
initions 6.1 and 6.2, respectively. The equality between these two
point sets is proved in Theorem 6.4. While it is possible that this
result is present in the convex geometry literature, it does not seem
to be well-known. For example, it is not mentioned in the works of
Moszynska [13] or Schneider [15]. This equivalence between antipo-
dal and diametric points is crucial to our work because it provides
the remetrization technique at the heart of Theorem 6.7, which
implies that a non-antipodal IFS is hyperbolic. A consequence of
Theorem 1.1 is that a non-antipodal affine IFS has the seemingly
stronger property of being topologically contractive.

4. Hyperbolic Implies Point-fibred Implies The

Existence of an Attractor

The implications (1) ⇒ (2) ⇒ (3) in Theorem 1.1 are proved
in this section. For this section we also introduce the notation
fσ | k = fσ1

◦ fσ2
◦ · · · ◦ fσk

(x). Note that, for k fixed, fσ | k(x) is a
function of both x and σ.
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Theorem 4.1. If F = (Rm; f1, f2, ..., fN ) is a hyperbolic IFS, then

F is point fibred.

Proof. For σ ∈ Ω, the proof that the limit limk→∞ fσ|k exists and is
independent of x is virtually identical to the proof of the classical
Contraction Mapping Theorem. Moreover, the same proof shows
that the limit is uniform in σ.

With π : Ω → R
m defined by π(σ) = limk→∞ fσ|k it is easy to

check that, for each n = 1, 2, . . . ,N , the diagram 2.1 commutes.
It only remains to show that π is continuous. With x fixed,

fσ | k(x) is a continuous function of σ. This is simply because, if
σ, τ ∈ Ω are sufficiently close in the product topology, then they
agree on the first k components. By Definition 2.5, the function π
is then the uniform limit of continuous (in σ) functions defined on
the compact set Ω. Therefore, π is continuous. �

Let F be a point-fibred affine IFS, and let A denote the set

A := π(Ω).

According to Theorem 4.3, A is the attractor of F .

Lemma 4.2. Let F = (Rm; f1, f2, ..., fN ) be a point-fibred affine

IFS with coding map π : Ω → R
m. If B ⊂ R

m is compact, then the

convergence in the limit

π(σ) = lim
k→∞

fσ|k(x)

is uniform in σ = σ1σ2 · · · ∈ Ω and x ∈ B simultaneously.

Proof. Only the uniformity requiress proof. Express fn(x) = Lnx+
an, where Ln is the linear part. Then
(4.1)
fσ|k(x) = Lσ|k(x) + Lσ|k−1(aσk

) + Lσ|k−2(aσk−1
) + · · · + Lσ|1a2 + a1

= Lσ|k(x) + fσ|k(0).

From equation 4.1 it follows that, for any x, y ∈ B,
(4.2)
dE(fσ|k(x), fσ|k(y)) =

∥

∥Lσ|k(x − y)
∥

∥

2

≤ sup
{

m
∑

j=1

2 |cj |
∥

∥Lσ|k(ej)
∥

∥

2
: c1e1 + · · · + cmem ∈ B

}

≤ c max
j

∥

∥fσ|k(ej) − fσ|k(0)
∥

∥

2
,
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where c = 2m · sup {maxj |cj | : c1e1 + · · · + cmem ∈ B} and where
{ej}

m
j=1 is a basis for R

m.
Let ǫ > 0. From the definition of point-fibred there is a kj ,

independent of σ, such that if k > kj , then

∥

∥fσ|k(ej) − π(σ)
∥

∥

2
<

ǫ

4c
and

∥

∥fσ|k(0) − π(σ)
∥

∥

2
<

ǫ

4c
,

which implies
∥

∥fσ|k(ej) − fσ|k(0)
∥

∥

2
< ǫ

2c
. This and equation 4.2

implies that if k ≥ k := maxj kj , then for any x, y ∈ B we have

(4.3) dE(fσ|k(x), fσ|k(y)) < c
ǫ

2c
=

ǫ

2
.

Let b be a fixed element of B. There is a kb, independent of σ, such
that if k > kb, then dE(fσ|k(b), π(σ)) < ǫ

2 . If k > max(kb, k) then,
by equation 4.3, for any x ∈ B

dE(fσ|k(x), π(σ)) ≤ dE(fσ|k(x), fσ|k(b))+dE(fσ|k(b), π(σ)) <
ǫ

2
+

ǫ

2
= ǫ.

�

Theorem 4.3 (A Point-Fibred IFS has an Attractor). If F =
(Rm; f1, f2, ..., fN ) is a point-fibred affine IFS, then F has an at-

tractor A = π(Ω), where π : Ω → R
m is the coding map of F .

Proof. It follows directly from the commutative diagram (2.1) that
A obeys the self-referential equation (2.3). We next show that A
satisfies equation (2.4).

Let ǫ > 0. We must show that there is an M such that if
k > M , then dH(F◦k(B), π(Ω)) < ǫ. It is sufficient to let M =
max(M1,M2), where M1 and M2 are defined as follows.

First, let a be an arbitrary element of A. Then there exists a
σ ∈ Ω such that a = π(σ). By Lemma 4.2 there is an M1 such
that if k > M1, then dE(fσ|k(b), a) = dE(fσ|k(b), π(σ)) < ǫ, for all

b ∈ B. In other words, A lies in an ǫ-neighborhood of F◦k(B).
Second, let b be an arbitrary element of B and σ an arbitrary

element of Ω. If a := π(σ) ∈ A, then there is an M2 such that
if k > M2, then dE(fσ|k(b), a) = dE(fσ|k(b), π(σ)) < ǫ. In other

words, F◦k(B) lies in an ǫ-neighborhood of A. �
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5. An IFS with an Attractor is Topologically

Contractive

The goal of this section is to establish the implication (3) ⇒ (4)
in Theorem 1.1. We will show that if an affine IFS has an attractor
as defined in Defintion 2.7 , then it is a topological contraction.
The proof uses notions involving convex bodies.

Definition 5.1. A convex body K is centrally symmetric if it has
the property that whenever x ∈ K, then −x ∈ K.

A well-known general technique for creating centrally symmetric
convex bodies from a given convex body is provided by the next
proposition.

Proposition 5.2. If a set K is a convex body in R
m, then the set

K ′ = K − K is a centrally symmetric convex body in R
m.

Definition 5.3 (Minkowski Norm). If K is a centrally symmetric
convex body in R

m, then the Minkowski norm on R
m is defined by

‖x‖K = inf {λ ≥ 0 : x ∈ λK}.

The next proposition is also well-known.

Proposition 5.4. If K is a centrally symmetric convex body in

R
m, then the function ‖x‖K defines a norm on R

m. Moreover, the

set K is the unit ball with respect to the Minkowski norm ‖x‖K .

Definition 5.5 (Minkowski Metric). If K is a centrally symmetric
convex body in R

m and ‖x‖K is the associated Minkowski norm,
then define the Minkowski metric on R

m by the rule

dK(x, y) := ‖x − y‖K .

While R. Rockafeller [14] refers to such a metric as a Minkowski

metric, the reader should be aware that this term is also associated
with the metric on space-time in theory of relativity. Since, for any
convex body K there are positive numbers r and R such that K
contains a ball of radius r and is contained in a ball of radius R,
the following proposition is clear.

Proposition 5.6. If d is a Minkowski metric, then d is Lipschitz

equivalent to the standard metric dE on R
m.
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Proposition 5.7. A metric d : R
m×R

m → [0,∞) is a Minkowski

metric if and only if it is translation invariant and distances behave

linearly along line segments. More specifically,

(5.1)
d(x + z, y + z) = d(x, y) and d(x, (1 − λ)x + λy) = λd(x, y)

for all x, y, z ∈ R
m and all λ ∈ [0, 1].

Proof. For a proof see Rockafeller [14] pp.131-132. �

Definition 5.8 (Topologically Contractive IFS). An IFS F =
{Rm; f1, f2, ..., fN} is called topologically contractive if there is a
convex body K such that F (K) ⊂ int(K).

The proof of Theorem 5.10 relies on the following lemma which
is easily proved.

Lemma 5.9. If g : R
m → R

m is affine and S ⊂ R
m, then

g(conv(S)) = conv(g(S)).

Theorem 5.10 (The Existence of an Attractor Implies a Topo-
logical Contraction). For an affine IFS F = {Rm; f1, f2, ..., fN}, if

there exists an attractor A ∈ H of the affine IFS F = {Rm; f1, f2, ..., fN},
then F is topologically contractive.

Proof. The proof of this theorem unfolds in three steps.

(1) There exists a convex body K1 and a positive integer t with
the property that F◦t (K1) ⊂ int (K1).

(2) The set K1 is used to define a convex body K2 such that
Ln (K2) ⊂ int (K2) , where fn(x) = Lnx + an and n =
1, 2, . . . ,N .

(3) There is a positive constant c such that the set K = cK2

has the property F (K) ⊂ int (K).

Proof of Step (1). Let A denote the attractor of F . Let Aρ = {x ∈
R

m : dH({x} , A) ≤ ρ} denote the dilation of A by radius ρ > 0.
Since we are assuming limk→∞ dH(F◦k(Aρ), A) = 0, we can find an
integer t so that dH(F◦t(A1), A) < 1. Thus,

(5.2) F◦t(A1) ⊆ int(A1).



14ROSS ATKINS, MICHAEL F. BARNSLEY, ANDREW VINCE, AND DAVID C. WILSON

If we let K1 := conv (A1), then

F◦t (K1) =
⋃

i1∈Ω

⋃

i2∈Ω

· · ·
⋃

it∈Ω

(fi1 ◦ fi2 ◦ · · · ◦ fit) (conv(A1))

=
⋃

i1∈Ω

⋃

i2∈Ω

· · ·
⋃

it∈Ω

conv (fi1 ◦ fi2 ◦ · · · ◦ fit(A1)) (by Lemma 5.9)

⊆
⋃

i1∈Ω

⋃

i2∈Ω

· · ·
⋃

it∈Ω

conv (int(A1)) = conv(int(A1)) (by inclusion (5.2))

⊆ int(conv(A1)) = int (K1) .

This argument completes the proof of Step (1).

Proof of Step (2). Consider the set

K2 :=
t−1
∑

k=0

(conv(F◦k(K1) − conv(F◦k(K1))).

The set K2 is a centrally symmetric convex body because it is a
finite Minkowski sum of centrally symmetric convex bodies. If any
affine map fn in F is written fn(x) = Lnx + an, where Ln : R

m →
R

m denotes the linear part, then

Ln(K2) =

t−1
∑

k=0

Ln

(

conv(F◦k(K1) − conv(F◦k(K1))
)

(since Ln is a linear map)

=

t−1
∑

k=0

(

conv(Ln

(

F◦k (K1)
)

) − conv(Ln

(

F◦k(K1)
)

)
)

(by Lemma 5.9)

=

t−1
∑

k=0

(

conv(fn

(

F◦k (K1)
)

) − conv(fn

(

F◦k(K1)
)

)
)

(since the ans cancel)

⊆

t−1
∑

k=0

(

conv(F◦(k+1) (K1)) − conv(F◦(k+1)(K1))
)

=
(

conv(F◦t(K1) − conv(F◦t(K1))
)

+
t−1
∑

k=1

(

conv(F◦k(K1) − conv(F◦k(K1))
)

⊆ (int (K1) − int (K1)) +
t−1
∑

k=1

(conv(F◦k(K1) − conv(F◦k(K1))) (by Step 1)

= int(K2).
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The second to last inclusion follows from the fact that
fn

(

F◦k (K1)
)

⊂ F◦(k+1) (K1). The last equality follows from the
fact that if O and C are symmetric convex bodies in R

m, then
int(O) + C = int (O + C). We have now completed the proof of
Step (2).

Proof of Step (3). It follows from Step (2) and the compactness of
K2 that there is a constant α ∈ (0, 1) such that dK2

(Ln(x), Ln(y)) <
αdK2

(x, y) for all x, y ∈ R
m and all n = 1, 2, . . . ,N .

Let

c >
r

(1 − α)
,

where r = max{dK2
(a1, 0), dK2

(a2, 0), . . . , dK2
(aN , 0)}. If x ∈ cK2

and f(x) = Lx + a is any function in the IFS F , then

‖f(x)‖K2
= dK2

(f (x) , 0) = dK2
(Lx + a, 0) ≤ dK2

(Lx + a,Lx) + dK2
(Lx, 0)

= dK2
(a, 0) + dK2

(Lx, 0) (by Equation (5.1))

< r + αdK2
(x, 0) = r + α ‖x‖K2

≤ r + αc < (c − αc) + αc = c.

This inequality shows that F (cK2) ⊂ int(cK2). �

6. A Non-Antipodal Affine IFS is Hyperbolic

Let Sm−1 ⊂ R
m denote the unit sphere in R

m. For a convex body
K ⊂ R

m and u ∈ Sm−1 there exists a pair, {Hu,H−u} , of distinct
supporting hyperplanes of K, each orthogonal to u and with the
property that they both intersect ∂K but contain no points of the
interior of K. Since by definition a convex body has non-empty
interior, this pair will be unique. The pair {Hu,H−u} is usually
referred to as the two supporting hyperplanes of K orthogonal to
u. (See Moszynska [13], p.14.)

Definition 6.1 (Antipodal Pairs). If K ⊂ R
m is a convex body

and u ∈ Sm−1, then define

Au := Au(K) = {(p, q) ∈ (Hu ∩ ∂K) × (H−u ∩ ∂K)} and

A := A(K) =
⋃

u∈Sm−1

Au.

We say that (p, q) is an antipodal pair of points with respect to K
if (p, q) ∈ A.
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Definition 6.2 (Diametric Pairs). If K ⊂ R
m is a convex body,

and u∈Sm−1, then define the diameter of K in the direction u to
be

D(u) = max{‖x − y‖2 : x, y∈K,x − y = αu,α ∈ R}.

The maximum is achieved at some pair of points belonging to ∂K
because K ×K is convex and compact, and ‖x − y‖2 is continuous
for (x, y) ∈ K × K. Now define

Du = {(p, q) ∈ ∂K × ∂K : D(u) = ‖q − p‖2} and

D =
⋃

u∈Sm−1

Du.

We say that (p, q) ∈ Du is a diametric pair of points in the direction
of u, and that D is the set of diametric pairs of points of K.

Definition 6.3 (Strictly Convex). A convex body K is strictly

convex if, for every two points x, y ∈ K, the open line segment
joining x and y is contained in the interior of K.

We write xy to denote the closed line segment with endpoints at
x and y so that y − x is the vector, in the direction from x to y,
whose magnitude is the length of xy.

Theorem 6.4. If K ⊂ R
m is a convex body, then the set of antipo-

dal pairs of points of K is the same as the set of diametric pairs of

points of K, i.e.,

A = D.

Proof. First we show that A ⊆ D. If (p, q) ∈ A, then p ∈ Hu ∩ ∂K
and q ∈ H−u ∩ ∂K for some u ∈ Sm−1. Clearly any chord of K
parallel to pq lies entirely in the region between Hu and H−u and
therefore cannot have length greater than that of pq. So D(q−p) =
‖q − p‖ and (p, q) ∈ Dq−p ⊆ D. Note, for use later in the proof,
that if K is strictly convex, then pq is the unique chord of maximum
length in its direction.

Conversely, to show that D ⊆ A, first consider the case where K
is a strictly convex body. For each u ∈ Sm−1, consider the points
xu ∈ Hu ∩ ∂K and x−u ∈ H−u ∩ ∂K. The continuous function
f : Sm−1 → Sm−1 defined by

f(u) =
xu − x−u

‖xu − x−u‖2
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has the property that 〈f(u), u〉 > 0 for all u. In other words, the
angle between u and f(u) is less than π

2 . But it is an elementary
exercise in topology (see, for example, Munkres [12], problem 10,
page 367) that if f : Sm−1 → Sm−1 maps no point x to its antipode
−x, then f has degree 1 and, in particular, is surjective. To show
that D ⊆ A, let (p, q) ∈ Dv for some v ∈ Sm−1. By the surjectivity
of f there is u ∈ Sm−1 such that f(u) = v. According to the last
sentence of the previous paragraph, xux−u is the unique longest
chord parallel to v. Therefore p = xu and q = x−u and consequently
(p, q) ∈ Au.

The case where K is not strictly convex is treated by a standard
limiting argument. Given a vector v ∈ Sm−1 and a longest chord
pq parallel to v, we must prove that (p, q) ∈ A. Since K is the
intersection of all strictly convex bodies containing K, there is a
sequence {Kk} of strictly convex bodies containing K with the
following two properties.

1. There is a longest chord pkqk of Kk parallel to u such that
limk→∞ ‖pk − qk‖2 = ‖p − q‖2 , and the limits limk→∞ pk = p̃ ∈ K
and limk→∞ qk = q̃ ∈ K exist.

By the result for the strictly convex case, there is a sequence
of vectors uk ∈ Sm−1 such that pk = Kk ∩ Huk

(Kk) and qk =
Kk ∩ H−uk

(Kk). By perhaps going to a subsequence

2. limk→∞ uk = u ∈ Sm−1 exists.

It follows from item 1 that ‖p̃ − q̃‖2 = ‖p − q‖2 and p̃ − q̃ is
parallel to v. Therefore, p̃q̃ as well as pq, are longest chords of K
parallel to v. It follows from 2 that if H and H ′ are the hyperplanes
orthogonal to u through p̃ and q̃ respectively, then H and H ′ are
parallel supporting hyperplanes of K. Therefore, necessarily p ∈ H
and q ∈ H ′, and consequently (p, q) ∈ Au ⊂ A. �

Definition 6.5 (Non-Antipodal IFS). If K ⊂ R
m is a convex

body, then f : R
m → R

m is non-antipodal with respect to K if
f(K) ⊆ K and (x, y) ∈ A (K) implies (f(x), f(y)) /∈ A (K). If
F = {Rm; f1, f2, ..., fN} is an iterated function system with the
property that each fn is non-antipodal with respect to K, then F
is called non-antipodal with respect to K.

The next proposition gives the implication (4) ⇒ (5) in Theo-
rem 1.1. The proof is clear.
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Proposition 6.6 (A Topological Contraction is Non-Antipodal). If

F = {Rm; f1, f2, ..., fN} is an affine iterated function system with

the property that there exists a convex body K ⊂ R
m such that

fn(K) ⊂ int(K) for all n = 1, 2, . . . , n, then F is non-antipodal

with respect to K.

The next theorem provides the implication that (5) ⇒ (1) in
Theorem 1.1.

Theorem 6.7. If the affine IFS F = (Rm; f1, f2, ..., fN ) is non-

antipodal with respect to a convex body K, then F is hyperbolic.

Proof. Assume that K is a convex body such that f is non-antipodal
with respect to K for all f ∈ F . Let C = K − K and let f(x) =
Lx + a ∈ F , where L is the linear part of f . By Proposition 5.2,
the set C is a centrally symmetric convex body and

L(C) = L(K) − L(K) = f(K) − f(K) ⊆ K − K = C.

We claim that L(C) ⊂ int(C). Since C is compact and L is
linear, to prove the claim it is sufficient to show that L(x) /∈ ∂C
for all x ∈ ∂C. By way of contradiction, assume that x ∈ ∂C
and L(x) ∈ ∂C. Then the vector x is a longest vector in C in its
direction. Since x ∈ C = K − K there are x1, x2 ∈ ∂K such that
x = x1−x2, and (x1, x2) ∈ D(K) = A(K), where the last equality is
by Theorem 6.4. So (x1, x2) is an antipodal pair with respect to K.
Likewise, since Lx is a longest vector in C in its direction, there are
y1, y2 ∈ ∂K such that Lx = y1 − y2, and (y1, y2) ∈ D(K) = A(K).
Therefore

f(x2) − f(x1) = L(x2) − L(x1) = L(x2 − x1) = Lx = y1 − y2,

which implies that (fn(x1), fn(x2)) ∈ D(K) = A(K), contradicting
that f is non-antipodal with respect to K.

If dC denotes the Minkowski metric with respect to the centrally
symmetric convex body C, then by Proposition 5.4 C is the unit
ball centered at the origin with respect to this metric. Since C is
compact, the containment L(C) ⊂ int(C) implies that there is an
α ∈ [0, 1) such that ‖Lx‖C < α ‖x‖C for all x ∈ R

m. Then

dC(f(x), f(y)) = ‖f(x) − f(y)‖C = ‖Lx − Ly‖C

= ‖L(x − y)‖C < α ‖x − y‖C = αdC(x, y).
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Therefore dC is a metric for which each function in the IFS is a
contraction. By Proposition 5.6, dC is Lipschitz equivalent to the
standard metric. �

7. An Answer to the Question of Kameyama

We now turn to the proof of Theorem 1.2, the theorem that set-
tles the question of Kameyama. If X ⊆ R

m and F = (X; f1, f2, ..., fN )
is an IFS on X, then the definitions of coding map and point-fibred

for F are exactly the same as Definitions 2.4 and 2.5, with R
m

replaced by X. The proof of Theorem 1.2 requires the following
proposition.

Proposition 7.1. If X ⊆ R
m and F = (X; f1, f2, ..., fN ) is an

IFS with a coding map π : Ω → R
m such that π(Ω) = X, then F is

point-fibred on X.

Proof. By Definition 2.5, we must show that limk→∞ fσ1
◦ fσ2

◦
· · · ◦ fσk

(x) exists, is independent of x ∈ X, and is continuous
as a function of σ = σ1σ2 · · · ∈ Ω. We will actually show that
limk→∞ fσ1

◦ fσ2
◦ · · · ◦ fσk

(x) = π(σ).
Since π is a coding map, we know by Definition 2.4 that fn ◦

π(σ) = π ◦sn(σ), for all n = 1, 2, . . . ,N . By assumption, if x is any
point in X, then there is a τ ∈ Ω such that π(τ) = x. Thus

lim
k→∞

fσ1
◦ fσ2

◦ · · · ◦ fσk
(x)= lim

k→∞
fσ1

◦ fσ2
◦ · · · ◦ fσk

(π(τ)) (since π(τ) = x)

= lim
k→∞

π(sσ1
◦ sσ2

◦ ... ◦ sσk
◦ τ) (by Diagram 2.1)

= π( lim
k→∞

sσ1
◦ sσ2

◦ ... ◦ sσk
◦ τ) (since π is continuous)

= π(σ).

�

Theorem 7.2. If F = (Rm; f1, f2, ..., fN ) is an affine IFS with a

coding map π : Ω → X, then F is point-fibred when restricted to

the affine hull of π(Ω). In particular, if π(Ω) contains a non-empty

open subset of R
m, then F is point-fibred on R

m.

Proof. Let A := π(Ω). Since fn(A) ⊆ A for all n, the restriction of
the IFS F to A, namely F|A := (A; f1, f2, . . . , fN ), is well defined.
It follows from Proposition 7.1 that F|A is point-fibred and, because
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the coding map for a point-fibred IFS is unique,

π(σ) = lim
k→∞

fσ1
◦ fσ2

◦ · · · ◦ fσk
(a)

for (σ, a) ∈ Ω × A. It only remains to show that the restriction
F|aff(A) := (aff(A); f1, f2, . . . , fN ) of the affine IFS F to the affine
hull of A is point-fibred.

Let x ∈ aff(A), the affine hull of A. It is well known that any
point in the affine hull can be expressed as a sum, x =

∑m
p=0 λpap for

some λ0, λ1, ..., λm ∈ R such that
∑m

p=0 λp = 1 and a0, a1, ..., am ∈

A. Hence, for (σ, x) ∈ Ω × aff(A),

lim
k→∞

fσ1
◦ fσ2

◦ · · · ◦ fσk
(x) = lim

k→∞
fσ1

◦ fσ2
◦ · · · ◦ fσk

(

m
∑

p=0

λpap),

= lim
k→∞

m
∑

p=0

λpfσ1
◦ fσ2

◦ · · · ◦ fσk
(ap)

=

m
∑

p=0

λpπ(σ) = π(σ).

�

Theorem 1.2 now follows easily from Theorem 7.2 and Theo-
rem 1.1.

Proof. (of Theorem 1.2) Let A := π(Ω) and let dim aff(A) = k ≤ m.
It is easy to check from the commuting diagram 2.1 that f(A) ⊆ A
for each f ∈ F implies that f(aff(A)) ⊆ aff(A) for each f ∈ F .
Since aff(A) is isomorphic to R

k, Theorem 1.1 can be applied to
the IFS F|aff(A) := (aff(A); f1, f2, ...fN ) to conclude that, since it is
point-fibred, F|aff(A) is also hyperbolic. �

Note that the IFS (R; f), where f(x) = 2x + 1, is not hyperbolic
on R, but it is hyperbolic on the affine subspace {−1} ⊂ R.

8. Concluding Remarks

Recently it has come to our attention that another condition,
equivalent to conditions (1) − (5) in our main result, Theorem 1.1,
is (6) F has joint spectral radius less than one. (We define the
joint spectral radius (JSR) of an affine IFS to be the joint spectral
radius of the set of linear factors of its maps.) This information is
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important because it connects our approach to the rapidly growing
literature about JSR, see for example [3], [4], and works that refer
to these.

Since Example 3.3 and the results presented by Blondel, Theys,
and Vladimirov [17] indicate there is no general fast algorithm
which will determine whether or not the joint spectral radius of an
IFS is less than one, we feel that Theorem 1.1 is important because
it provides an easily testable condition that an IFS has a unique
attractor. In particular, the topologically contractive and non-
antipodal conditions (conditions 4 and 5) provide geometric/visual
tests, which can easily be checked for any affine IFS. In addition
to yielding the existence of an attractor, these two conditions also
provide information concerning the location of the attractor. (For
example, the attractor is a subset of a particular convex body.)
We also anticipate that Theorem 1.1 can be generalized into other
broader classes of functions, where the techniques developed for the
theory of joint spectal radius will not apply.
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